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Abstract

The search for life on the planets outside the Solar System can be broadly classified into the following:
looking for Earth-like conditions or the planets similar to the Earth (Earth similarity), and looking for
the possibility of life in a form known or unknown to us (habitability). The two frequently used indices,
Earth Similarity Index (ESI) and Planetary Habitability Index (PHI), describe heuristic methods to score
similarity/habitability in the efforts to categorize different exoplanets or exomoons. ESI, in particular,
considers Earth as the reference frame for habitability and is a quick screening tool to categorize and
measure physical similarity of any planetary body with the Earth. The PHI assesses the probability that
life in some form may exist on any given world, and is based on the essential requirements of known life:
a stable and protected substrate, energy, appropriate chemistry and a liquid medium. We propose here a
different metric, a Cobb-Douglas Habitability Score (CDHS), based on Cobb-Douglas habitability production
function (CD-HPF), which computes the habitability score by using measured and calculated planetary input
parameters. As an initial set, we used radius, density, escape velocity and surface temperature of a planet.
The values of the input parameters are normalized to the Earth Units (EU). The proposed metric, with
exponents accounting for metric elasticity, is endowed with verifiable analytical properties that ensure global
optima, and is scalable to accommodate finitely many input parameters. The model is elastic, does not suffer
from curvature violations and, as we discovered, the standard PHI is a special case of CDHS. Computed
CDHS scores are fed to K-NN (K-Nearest Neighbour) classification algorithm with probabilistic herding
that facilitates the assignment of exoplanets to appropriate classes via supervised feature learning methods,
producing granular clusters of habitability. The proposed work describes a decision-theoretical model using
the power of convex optimization and algorithmic machine learning.

Keywords: Habitability Score, Cobb-Douglas production function, expolanets, machine learning, CDHS,
optimization

1. Introduction

In the last decade, thousands of planets are discovered in our Galaxy alone. The inference is that stars
with planets are a rule rather than exception (Cassan et al., 2012), with estimates of the actual number of
planet exceeding the number of stars in our Galaxy by orders of magnitude (Strigari et al., 2012). The same
line of reasoning suggests a staggering number of at least 1024 planets in the observable Universe. The biggest
question posed therefore is whether there are other life-harbouring planets. The most fundamental interest
is in finding the Earth’s twin. In fact, Kepler space telescope (http://kepler.nasa.gov/) was designed
specifically to look for Earth’s analog – Earth-size planets in the habitable zones (HZ) of G-type stars
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(Batalha, 2014). More and more evidence accumulated in the last few years suggests that, in astrophysical
context, Earth is an average planet, with average chemistry, existing in many other places in the Galaxy,
average mass and pressure. Moreover, recent discovery of the rich organic content in the protoplanetary disk
of newly formed star MWC 480 (Öberg et al., 2015) has shown that neither is our Solar System unique in
the abundance of the key components for life. Yet the only habitable planet in the Universe known to us is
our Earth.

The question of habitability is of such interest and importance that the theoretical work has expanded
from just the stellar HZ concept to the Galactic HZ (Gonzales 2001) and, recently, to the Universe HZ
— asking a question which galaxies are more habitable than others (Dayal et al. 2015). However, the
simpler question — which of thousands detected planets are, or can be, habitable is still not answered.
Life on other planets, if exists, may be similar to what we have on our planet, or may be in some other
unknown form. The answer to this question may depend on understanding how different physical planetary
parameters, such as planet’s orbital properties, its chemical composition, mass, radius, density, surface and
interior temperature, distance from it’s parent star, even parent star’s temperature or mass, combine to
provide habitable conditions. With currently more than 1800 confirmed and more than 4000 unconfirmed
discoveries1, there is already enormous amount of accumulated data, where the challenge lies in the selection
of how much to study about each planet, and which parameters are of the higher priority to evaluate.

Several important characteristics were introduced to address the habitability question. Schulze-Makuch
et al. (2011) first addressed this issue through two indices, the Planetary Habitability Index (PHI) and the
Earth Similarity Index (ESI), where maximum is set as 1 for a planet where life as we know it had formed;
thus for the Earth, PHI=ESI= 1. ESI represents a quantitative measure with which to assess the similarity
of a planet with the Earth on the basis of mass, size and temperature. But ESI alone is insufficient to
conclude about the habitability, as planets like Mars have ESI close to 0.8 but we cannot still categorize it
as habitable. There is also a possibility that a planet with ESI value slightly less than 1 may harbor life in
some form which is not there on Earth, i.e. unknown to us. PHI was quantitatively defined as a measure
of the ability of a planet to develop and sustain life. However, evaluating PHI values for large number of
planets is not an easy task. In Irwin et al. (2014), another parameter was introduced to account for the
chemical composition of exoplanets and some biology-related features such as substrate, energy, geophysics,
temperature and age of the planet — the Biological Complexity Index (BCI). Here, we briefly describe the
mathematical forms of these parameters.

Earth Similarity Index (ESI). ESI was designed to indicate how Earth-like an exoplanet might be
(Schulze-Makuch et al., 2011) and is an important factor to initially assess the habitability measure. Its
value lies between 0 (no similarity) and 1, where 1 is the reference value, i.e. the ESI value of the Earth,
and a general rule is that any planetary body with an ESI over 0.8 can be considered an Earth-like. It was
proposed in the form

ESIx =
(

1−
∣∣∣∣x− x0

x+ x0

∣∣∣∣)w , (1)

where ESIx is the ESI value of a planet for x property, and x0 is the Earth’s value for that property. The
final ESI value of the planet is obtained by combining the geometric means of individual values, where w
is the weighting component through which the sensitivity of scale is adjusted. Four parameters: surface
temperature Ts, density D, escape velocity Ve and radius R, are used in ESI calculation. This index is split
into interior ESIi (calculated from radius and density), and surface ESIs (calculated from escape velocity
and surface temperature). Their geometric means are taken to represent the final ESI of a planet. However,
ESI in the form (1) was not introduced to define habitability, it only describes the similarity to the Earth in
regard to some planetary parameters. For example, it is relatively high for the Moon.

1Extrasolar Planets Encyclopedia, http://exoplanet.eu/catalog/
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Planetary Habitability Index (PHI). To actually address the habitability of a planet, Schulze-Makuch
et al. (2011) defined the PHI as

PHI = (S · E · C · L)1/4
, (2)

where S defines a substrate, E – the available energy, C – the appropriate chemistry and L – the liquid
medium; all the variables here are in general vectors, while the corresponding scalars represent the norms
of these vectors. For each of these categories, the PHI value is divided by the maximum PHI to provide the
normalized PHI in the scale between 0 to 1. However, PHI in the form (2) lacks some other properties of a
planet which may be necessary for determining its present habitability. For example, in Shchekinov et al.
(2013) it was suggested to complement the original PHI with the explicit inclusion of the age of the planet
(see their Eq. 6).

Biological Complexity Index (BCI). To come even closer to defining habitability, yet another index
was introduced, comprising the above mentioned four parameters of the PHI and three extra parameters,
such as geophysical complexity G, appropriate temperature T and age A (Irwin et al., 2014). Therefore, the
total of seven parameters were initially considered to be important for the BCI. However, due to the lack of
information on chemical composition and the existence of liquid water on exoplanets, only five were retained
in the final formulation,

BCI = (S · E · T ·G ·A)1/5
. (3)

It was found in Irwin et al. (2014) that for 5 exoplanets the BCI value is higher than for Mars, and that
planets with high BCI values may have low values of ESI.

All previous indicators for habitability assume a planet to reside within in a classical HZ of a star, which
is conservatively defined as a region where a planet can support liquid water on the surface (Huang, 1959;
Kasting, 1993). The concept of an HZ is, however, a constantly evolving one, and it has have been since
suggested that a planet may exist beyond the classical HZ and still be a good candidate for habitability
(Irwin & Schulze-Makuch, 2011; Heller & Armstrong, 2014). Though presently all efforts are in search for
the Earth’s twin where the ESI is an essential parameter, it never tells that a planet with ESI close to 1
is habitable. Much advertised recent hype in press about finding the best bet for life-supporting planet –
Gliese 832c with ESI = 0.81 (Wittenmyer et al., 2014), was thwarted by the realization that the planet is
more likely to be a super-Venus, with large thick atmosphere, hot surface and probably tidally locked with
its star.

We present here the novel approach to determine the habitability score of all confirmed exoplanets an-
alytically. Our goal is to determine the likelihood of an exoplanet to be habitable using the newly defined
habitability score (CDHS) based on Cobb-Douglas habitability production function (CD-HPF), which com-
putes the habitability score by using measured and calculated planetary input parameters. Here, the PHI
in its original form turned out to be a special case. We are looking for a feasible solution that maximizes
habitability scores using CD-HPF with some defined constraints. In the following sections, the proposed
model and motivations behind our work are discussed along with the results and applicability of the method.
We conclude by listing key takeaways and robustness of the method. The related derivations and proofs are
included in the appendices.

2. CD-HPF: Cobb-Douglas Habitability Production Function

We first present key definitions and terminologies that are utilized in this paper. These terms play
critical roles in understanding the method and the algorithm adopted to accomplish our goal of validating
the habitability score, CDHS, by using CD-HPF eventually.

2.1. Key Definitions
• Mathematical Optimization

Optimization is one of the procedures to select the best element from a set of available alternatives
in the field of mathematics, computer science, economics, or management science (Hájková & Hurnik,
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2007). An optimization problem can be represented in various ways. Below is the representation of an
optimization problem. Given a function f : A→ R from a set A to the real numbers R. If an element
x0 in A is such that f(x0) ≤ f(x) for all x in A, this ensures minimization. The case f(x0) ≥ f(x) for
all x in A is the specific case of maximization. The optimization technique is particularly useful for
modeling the habitability score in our case. In the above formulation, the domain A is called a search
space of the function f , CD-HPF in our case, and elements of A are called the candidate solutions, or
feasible solutions. The function as defined by us is a utility function, yielding the habitability score
CDHS. It is a feasible solution that maximizes the objective function, and is called an optimal solution
under the constraints known as Returns to scale.

• Returns to scale measure the extent of an additional output obtained when all input factors change
proportionally. There are three types of returns to scale:

1. Increasing returns to scale (IRS). In this case, the output increases by a larger proportion
than the increase in inputs during the production process. For example, when we multiply the
amount of every input by the number N , the factor by which output increases is more than N .
This change occurs as
(i) Greater application of the variable factor ensures better utilization of the fixed factor.
(ii) Better division of the variable factor.

(iii) It improves coordination between the factors.
The 3D plots obtained in this case are neither concave nor convex.

2. Decreasing returns to scale (DRS). Here, the proportion of increase in input increases the
output, but in lower ratio, during the production process. For example, when we multiply the
amount of every input by the number N , the factor by which output increases is less than N .
This happens because:
(i) As more and more units of a variable factor are combined with the fixed factor, the latter

gets over-utilized. Hence, the rate of corresponding growth of output goes on diminishing.
(ii) Factors of production are imperfect substitutes of each other. The divisibility of their units

is not comparable.
(iii) The coordination between factors get distorted so that marginal product of the variable factor

declines.
The 3D plots obtained in this case are concave.

3. Constant returns to scale (CRS). Here, the proportion of increase in input increases output
in the same ratio, during the production process. For example, when we multiply the amount of
every input by a number N , the resulting output is multiplied by N . This phase happens for a
negligible period of time and can be considered as a passing phase between IRS and DRS. The
3D plots obtained in this case are concave.

• Computational Techniques in Optimization. There exist several well-known techniques including
Simplex, Newton-like and Interior point-based techniques (Nemirovski and Todd, 2008). One such
technique is implemented via MATLAB’s optimization toolbox using the function fmincon. This
function helps find the global optima of a constrained optimization problem which is relevant to the
model proposed and implemented by the authors. Illustration of the function and its syntax are
provided in Appendix D.

• Concavity. Concavity ensures global maxima. The implication of this fact in our case is that if
CD-HPF is proved to be concave under some constraints (this will be elaborated later in the paper),
we are guaranteed to have maximum habitability score for each exoplanet in the global search space.

• Machine Learning. Classification of patterns based on data is a prominent and critical component
of machine learning and will be highlighted in subsequent part of our work where we made use of a
standard K-NN algorithm. The algorithm is modified to tailor to the complexity and efficacy of the
proposed solution. Optimization, as mentioned above, is the art of finding maximum and minimum of
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surfaces that arise in models utilized in science and engineering. More often than not, the optimum
has to be found in an efficient manner, i.e. both the speed of convergence and the order of accuracy
should be appreciably good. Machines are trained to do this job as, most of the times, the learning
process is iterative. Machine learning is a set of methods and techniques that are intertwined with
optimization techniques. The learning rate could be accelerated as well, making optimization problems
deeply relevant and complementary to machine learning.

2.2. Cobb-Douglas Habitability Production Function CD-HPF
The general form of the Cobb-Douglas production function CD-PF is

Y = k · (x1)α · (x2)β , (4)

where k is a constant that can be set arbitrarily according to the requirement, Y is the total production, i.e.
output, which is homogeneous with the degree 1; x1 and x2 are the input parameters (or factors); α and β
are the real fixed factors, called the elasticity coefficients. The sum of elasticities determines returns to scale
conditions in the CDPF. This value can be less than 1, equal to 1, or greater than 1.

What motivates us to use the Cobb-Douglas production function is its properties. Cobb-Douglas produc-
tion function (Cobb & Douglas, 1928) was originally introduced for modeling the growth of the American
economy during the period of 1899–1922, and is currently widely used in economics and industry to optimize
the production while minimizing the costs (Wu, 2001; Hossain et al., 2012; Hassani, 2012; Saha et al., 2016).
Cobb-Douglas production function is concave if the sum of the elasticities is not greater than one (see the
proof in Bergstrom 2010). This gives global extrema in a closed interval which is handled by constraints in
elasticity. The physical parameters used in the Cobb-Douglas model may change over time and, as such,
may be modeled as continuous entities. A functional representation, i.e response, Y , is thus a continuous
function, and may increase or decrease in maximum or minimum value as these parameters change. Our
formulation serves this purpose, where elasticities may be adjusted via fmincon or fitting algorithms, in
conjunction with the intrinsic property of the CD-HPF that ensures global maxima for concavity. Our
simulations, that include animation and graphs, support this trend (see Figures 1 and 2 in Section 3). As
the physical parameters change in value, so do the function values and its maximum for all the exoplanets
in the catalog, and this might rearrange the CDHS pattern with possible changes in the parameters, while
maintaining consistency with the database.

The most important properties of this function that make it flexible to be used in various applications
are:
• It can be transformed to the log-linear form from its multiplicative form (non-linear) which makes it

simple to handle, and hence, linear regression techniques can be used for estimation of missing data.

• Any proportional change in any input parameter can be represented easily as the change in the output.

• The ratio of relative inputs x1 and x2 to the total output Y is represented by the elasticities α and β.
The analytical properties of the CD-HPF motivated us to check the applicability in our problem, where the
four parameters considered to estimate the habitability score are surface temperature, escape velocity, radius
and density. Here, the production function Y is the habitability score of the exoplanet, where the aim is to
maximize Y , subject to the constraint that the sum of all elasticity coefficients shall be less than or equal
to 1. Computational optimization is relevant for elasticity computation in our problem. Elasticity is the
percentage change in the output Y , given one percent change in the input parameter, x1 or x2. We assume
k is constant. In other words, we compute the rate of change of output Y , the CD-HPF, with respect to
one unit of change in input, such as x1 or x2. As the quantity of x1 or x2 increases by one percent, output
increases by α or β percent. This is known as the elasticity of output with respect to an input parameter. As
it is, values of the elasticity, α and β are not ad-hoc and need to be approximated for optimization purpose
by some computational technique. The method, fmincon with interior point search, is used to compute the
elasticity values for CRS, DRS and IRS. The outcome is quick and accurate. We elaborate the significance
of the scales and elasticity in the context of CD-HPF and CDHS below.
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• Increasing returns to scale (IRS): In Cobb-Douglas model, if α+β > 1, the case is called an IRS.
It improves the coordination among the factors. This is indicative of boosting the habitability score
following the model with one unit of change in respective predictor variables.

• Decreasing returns to scale (DRS): In Cobb-Douglas model, if α + β < 1, the case is called
a DRS, where the deployment of an additional input may affect the output with diminishing rate.
This implies the habitability score following the model may decrease with the one unit of change in
respective predictor variables.

• Constant returns to scale (CRS): In Cobb-Douglas model, if α+ β = 1, this case is called a CRS,
where increase in α or/and β increases the output in the same proportion. The habitability score,
i.e the response variable in the Cobb-Douglas model, grows proportionately with changes in input or
predictor variables.

The range of elasticity constants is between 0 and 1 for DRS and CRS. This will be exploited during the
simulation phase (Section 3). It is proved in Appendices B and C that the habitability score (CDHS)
maximization is accomplished in this phase for DRS and CRS, respectively.

The impact of change in the habitability score according to each of the above constraints will be elaborated
in Sections 4 and 5. Our aim is to optimize elasticity coefficients to maximize the habitability score of the
confirmed exoplanets using the CD-HPF.

2.3. Cobb-Douglas Habitability Score estimation
We have considered the same four parameters used in the ESI metric (Eq. 1), i.e. surface temperature,

escape velocity, radius and density, to calculate the Cobb-Douglas Habitability Score (CDHS). Analogous to
the method used in ESI, two types of Cobb-Douglas Habitability Scores are calculated – the interior CDHSi
and the surface CDHSi. The final score is computed by a linear convex combination of these two, since it
is well known that a convex combination of convex/concave function is also convex/concave. The interior
CDHSi, denoted by Y 1, is calculated using radius R and density D,

Y 1 = CDHSi = (D)α · (R)β . (5)

The surface CDHSs, denoted by Y 2, is calculated using surface temperature Ts and escape velocity Ve,

Y 2 = CDHSs = (Ts)γ · (Ve)δ . (6)

The final CDHS Y , which is a convex combination of Y 1 and Y 2, is determined by

Y = w′ · Y 1 + w′′ · Y 2 , (7)

where the sum of w′ and w′′ equals 1. The values of w′ and w′′ are the weights of the interior CDHSi
and surface CDHSs, respectively. These weights depend on the importance of individual parameters of each
exoplanet. The Y 1 and Y 2 are obtained by applying CD-HPF (Eq. 4) with k = 1. Finally, the Cobb-Douglas
habitability production function can be formally written as

Y = f (R,D, Ts, Ve) = (R)α · (D)β · (Ts)γ · (Ve)δ . (8)

The goal is to maximize Y , iff α+β+ γ+ δ < 1. The ease of visualization is the reason CDHS is computed
by splitting into two parts Y 1 and Y 2 and combining by using the weights w′ and w′′. Individually, each of
Y 1 and Y 2 are sample 3D models and, as such, are easily comprehensible via surface plots as demonstrated
later (see Figs. 1 and 2 in Section 3). The authors would like to emphasize that instead of splitting and
computing Y as a convex combination of Y 1 and Y 2, a direct calculation of Y is possible, which does not
alter the final outcome. It is avoided here, since using the product of all four parameters with corresponding
elasticities α, β, γ and δ would make rendering the plots impossible for the simple reason of dimensionality
being too high, 5 instead of 3. We reiterate that the scalability of the model from α, β to α, β, γ and δ does
not suffer due to this scheme. The proof presented in Appendix B bears testimony to our claim.
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2.4. The Theorem for Maximization of Cobb-Douglas habitability production function
Statement: CD-HPF attains global maxima in the phase of DRS or CRS (Saha et al., 2016).

Sketch of proof: Generally profit of a firm can be defined as

profit = revenue− cost = (price of output× output)− (price of input× input) .

Let p1, p2, . . . , pn be a vector of prices for outputs, or products, and w1, w2, . . . , wm be a vector of prices
for inputs of the firm, which are always constants; and let the input levels be x1, x2, . . . , xm, and the output
levels be y1, y2, . . . , yn. The profit, generated by the production plan, (x1, . . . , xm, y1, . . . , yn) is

π = (p1 · y1 + . . .+ pn · yn − w1 · x1 − . . .− wm · xm) .

Suppose the production function for m inputs is

Y = f (x1, x2, ..., xm) ,

and its profit function is
π = p · Y − w1 · x1 − . . .− wm · xm .

A single output function needs p as the price, while multiple output functions will require multiple prices
p1, p2, . . . , pn. The profit function in our case, which is a single-output multiple-inputs case, is given by

π = pf (R,D, Ts, Ve)− w1R− w2D − w3Ts − w4Ve , (9)

where w1,w2,w3,w4 are the weights chosen according to the importance for habitability for each planet.
Maximization of CD-HPF is achieved when

(1) p ∂f
∂R

= w1 , (2) p ∂f
∂D

= w2 , (3) p ∂f
∂Ts

= w3 , (4) p ∂f
∂Ve

= w4 . (10)

The habitability score is conceptualized as a profit function where the cost component is introduced as
a penalty function to check unbridled growth of CD-HPF. This bounding framework is elaborated in the
proofs of concavity, the global maxima and computational optimization technique, and function fmincon in
Appendices B, C and D, respectively.

Remark: If we consider the case of CRS, where all the elasticities of different cost components are equal,
the output is Y =

∏n
i=1 x

αi
i , where all αi are equal and

∑
αi = 1. In such scenario, Y ≡ G.M. (Geometric

Mean) of the cost inputs. Further scrutiny reveals that the geometric mean formalization is nothing but the
representation of the PHI, thus establishing our framework of CD-HPF as a broader model, with the PHI
being a corollary for the CRS case.

Once we compute the habitability score, Y , the next step is to perform clustering of the Y values.
We have used K-nearest neighbor (K-NN) classification algorithm and introduced probabilistic herding and
thresholding to group the exoplanets according to their Y values. The algorithm finds the exoplanets for
which Y values are very close to each other and keeps them in the same group, or cluster. Each CDHS value
is compared with its K (specified by the user) nearest exoplanet’s (closer Y values) CDHS value, and the
class which contains maximum nearest to the new one is allotted as a class for it.

3. Implementation of the Model

We applied the CD-HPF to calculate the Cobb-Douglas habitability score (CDHS) of exoplanets. A
total of 664 confirmed exoplanets are taken from the Planetary Habitability Laboratory Exoplanets Catalog
(PHL-EC)2. The catalog contains observed and estimated stellar and planetary parameters for all currently

2provided by the Planetary Habitability Laboratory @ UPR Arecibo, accessible at
http://phl.upr.edu/projects/habitable-exoplanets-catalog/data/database
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confirmed exoplanets. We have used only those entries, for which the mean surface temperature was provided
— 664 planets (only planets with solid surfaces, according to PHL-EC, including Earth). As mentioned
above, the CDHS of exoplanets are computed from the interior CDHSi and the surface CDHSs. The input
parameters radius R and density D are used to compute the values of the elasticities α and β. Similarly,
the input parameters surface temperature TS and escape velocity Ve are used to compute the elasticities γ
and δ. These parameters, except the surface temperature, are given in Earth Units (EU) in the PHL-EC
catalog. We have normalized the surface temperatures Ts of exoplanets to the EU, by dividing each of them
with Earth’s mean surface temperature, 288 K.

The Cobb-Douglas function is applied on varying elasticities to find the CDHS close to Earth’s value,
which is considered as 1. As all the input parameters are represented in EU, we are looking for the exoplanets
whose CDHS is closer to Earth’s CDHS. For each exoplanet, we obtain the optimal elasticity and the
maximum CDHS value. The results are demonstrated graphically using 3D plot. All simulations were
conducted using the MATLAB software for the cases of DRS and CRS. From Eq. (B.38), we can see that
for CRS Y will grow asymptotically, if

α+ β + γ + δ = 1 . (11)

Let us set
α = β = γ = δ = 1/4 . (12)

In general, the values of elasticities may not be equal but the sum may still be 1. As we know already, this is
CRS. A special case of CRS, where the elasticity values are made to be equal to each other in Eq. (12), turns
out to be structurally analogous to the PHI and BCI formulations. Simply stated, the CD-HPF function
satisfying this special condition may be written as

Y = f = k (R ·D · Ts · Ve)1/4
. (13)

The function is concave for CRS and DRS (Appendices B and C).

3.1. Computation of CDHS in DRS phase
We have computed elasticities separately for interior CDHSi and surface CDHSs in the DRS phase.

These values were obtained using function fmincon, a computational optimization technique explained in
Appendix D. Tables 1 through 3 show a sample of computed values. Table 1 shows the computed elasticities
α, β and CDHSi. The optimal interior CDHSi for most exoplanets are obtained at α = 0.8 and β = 0.1.
Table 2 shows the computed elasticities γ, δ and CDHSs. The optimal surface CDHS are obtained at γ = 0.8
and δ = 0.1. Using these results, 3D graphs are generated and are shown in Figure 1. The X and Y axes
represent elasticities and Z-axis represents CDHS of exoplanets. The final CDHS, Y , calculated using Eq. (7)
with w′ = 0.99 and w′′ = 0.01, is presented in Table 3.

3.2. Computation of CDHS in CRS phase
The same calculations were carried out for the CRS phase. Tables 4, 5 and 6 show the sample of computed

elasticities and habitability scores in CRS. The convex combination of CDHSi and CDHSs gives the final
CDHS (Eq. 7) with w′ = 0.99 and w′′ = 0.01. The optimal interior CDHSi for most exoplanets were obtained
at α = 0.9 and β = 0.1, and the optimal surface CDHSs were obtained at γ = 0.9 and δ = 0.1. Using these
results, 3D graphs were generated and are shown in Figure 2.

Tables 1, 2 and 3 represent CDHS for DRS, where the corresponding values of elasticities were found by
fmincon to be 0.8 and 0.1, and the sum= 0.9 < 1 (The theoretical proof is given in Appendix B). Tables 4,
5 and 6 show results for CRS, where the sum of the elasticities = 1 (The theoretical proof is given in
Appendix C). The approximation algorithm fmincon initiates the search for the optima by starting from
a random initial guess, and then it applies a step increment or decrements based on the gradient of the
function based on which our modeling is done. It terminates when it cannot find elasticities any better for
the maximum CDHS. The plots in Figures 1 and 2 show all the elasticities for which fmincon searches for
the global maximum in CDHS, indicated by a black circle. Those values are read off from the code (given in

8



Figure 1: Plot of interior CDHSi (Left) and surface CDHSs (Right) for DRS

Appendix E) and printed as 0.8 and 0.1, or whichever the case may be. A minimalist web page is designed
to host all relevant data and results: sets, figures, animation video and a graphical abstract. It is available
at https://habitabilitypes.wordpress.com/.

The animation video, available at the website, demonstrates the concavity property of CD-HPF and
CDHS. The animation comprises 664 frames (each frame is a surface plot essentially), corresponding to
664 exoplanets under consideration. Each frame is a visual representation of the outcome of CD-HPF and
CDHS applied to each exoplanet. The X and Y axes of the 3D plots represent elasticity constants and Z-axis
represents the CDHS. Simply stated, each frame, demonstrated as snapshots of the animation in Figures 1
and 2, is endowed with a maximum CDHS and the cumulative effect of all such frames is elegantly captured
in the animation.

Table 1: Sample simulation output of interior CDHSi of exoplanets calculated from radius and density for
DRS

Exoplanet Radius Density Elasticity(α) Elasticity (β) CDHSi
GJ 163 c 1.83 1.19 0.8 0.1 1.65012
GJ 176 b 1.9 1.23 0.8 0.1 1.706056

GJ 667C b 1.71 1.12 0.8 0.1 1.553527
GJ 667C c 1.54 1.05 0.8 0.1 1.4195
GJ 667C d 1.67 1.1 0.8 0.1 1.521642
GJ 667C e 1.4 0.99 0.8 0.1 1.307573
GJ 667C f 1.4 0.99 0.8 0.1 1.307573
GJ 3634 b 1.81 1.18 0.8 0.1 1.634297

Kepler-186 f 1.11 0.9 0.8 0.1 1.075679
Gl 15 A b 1.69 1.11 0.8 0.1 1.537594

HD 20794 c 1.35 0.98 0.8 0.1 1.26879
HD 40307 e 1.5 1.03 0.8 0.1 1.387256
HD 40307 f 1.68 1.11 0.8 0.1 1.530311
HD 40307 g 1.82 1.18 0.8 0.1 1.641517
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Table 2: Sample simulation output of surface CDHS of exoplanets calculated from escape velocity and surface
temperature for DRS

Exoplanet Escape Velocity Surface temperature Elasticity (γ) Elasticity (δ) CDHSs
GJ 163 c 1.99 1.11146 0.8 0.1 1.752555
GJ 176 b 2.11 1.67986 0.8 0.1 1.91405

GJ 667C b 1.81 1.49063 0.8 0.1 1.672937
GJ 667C c 1.57 0.994 0.8 0.1 1.433764
GJ 667C d 1.75 0.71979 0.8 0.1 1.51409
GJ 667C e 1.39 0.78854 0.8 0.1 1.27085
GJ 667C f 1.39 0.898958 0.8 0.1 1.287614
GJ 3634 b 1.97 2.1125 0.8 0.1 1.946633

Kepler-186 f 1.05 0.7871 0.8 0.1 1.015213
Gl 15 A b 1.78 1.412153 0.8 0.1 1.641815

HD 40307 e 1.53 1.550694 0.8 0.1 1.482143
HD 40307 f 1.76 1.38125 0.8 0.1 1.623444
HD 40307 g 1.98 0.939236 0.8 0.1 1.716365
HD 20794 c 1.34 1.89791667 0.8 0.1 1.719223

Table 3: Sample simulation output of CDHS with w′ = 0.99 and w′′ = 0.01 for DRS

Exoplanet CDHSi CDHSs CDHS
GJ 163 c 1.65012 1.752555 1.651144
GJ 176 b 1.706056 1.91405 1.708136

GJ 667C b 1.553527 1.672937 1.554721
GJ 667C c 1.4195 1.433764 1.419643
GJ 667C d 1.521642 1.514088 1.521566
GJ 667C e 1.307573 1.27085 1.307206
GJ 667C f 1.307573 1.287614 1.307373
GJ 3634 b 1.634297 1.946633 1.63742
Gl 15 A b 1.537594 1.641815 1.538636

Kepler-186 f 1.075679 1.015213 1.075074
HD 20794 c 1.26879 1.719223 1.273294
HD 40307 e 1.387256 1.482143 1.388205
HD 40307 f 1.530311 1.623444 1.531242
HD 40307 g 1.641517 7 1.716365 1.642265

3.3. Attribute Enhanced K-NN Algorithm: A Machine learning approach
K-NN, or K-nearest neighbor, is a well-known machine learning algorithm. Attribute enhanced K-NN

algorithm is used to classify the exoplanets into different classes based on the computed CDHS values. The
algorithm produces 6 classes, wherein each class carries exoplanets with CDHS values close to each other, a
first condition for being called as ”neighbours”. 80% of data from the Habitable Exoplanets Catalog (HEC)3)
are used for training, and remaining 20% for testing. Training–testing process is integral to machine learn-
ing, where the machine is trained to recognize patterns by assimilating a lot of data and, upon applying
the learned patterns, identifies new data with a reasonable degree of accuracy. The efficacy of a learning
algorithm is reflected in the accuracy with which the test data is identified. The training data set is uni-

3The Habitable Exoplanets Catalog (HEC) is an online database of potentially habitable planets, total 32
as on January 16, 2016; maintained by the Planetary Habitability LaboratoryUPR Arecibo, and available at
http://phl.upr.edu/projects/habitable-exoplanets-catalog
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Table 4: Sample simulation output of interior CDHSi of exoplanets calculated from radius and density for
CRS

Exoplanet Radius Density Elasticity(α) Elasticity (β) CDHSi

GJ 163 c 1.83 1.19 0.9 0.1 1.752914
GJ 176 b 1.9 1.23 0.9 0.1 1.819151

GJ 667C b 1.71 1.12 0.9 0.1 1.639149
GJ 667C c 1.54 1.05 0.9 0.1 1.482134
GJ 667C d 1.67 1.1 0.9 0.1 1.601711
GJ 667C e 1.4 0.99 0.9 0.1 1.352318
GJ 667C f 1.4 0.99 0.9 0.1 1.352318
GJ 3634 b 1.81 1.18 0.9 0.1 1.734199

Kepler-186 f 1.11 0.9 0.9 0.1 1.086963
Gl 15 A b 1.69 1.11 0.9 0.1 1.62043

HD 20794 c 1.35 0.98 0.9 0.1 1.307444
HD 40307 e 1.5 1.03 0.9 0.1 1.444661
HD 40307 f 1.68 1.11 0.9 0.1 1.611798
HD 40307 g 1.82 1.18 0.9 0.1 1.74282

Table 5: Sample simulation output of surface CDHS of exoplanets calculated from escape velocity and surface
temperature for CRS

Exoplanet Escape Velocity Surface temperature Elasticity (γ) Elasticity (δ) CDHSs
GJ 163 c 1.99 1.11146 0.9 0.1 1.877401
GJ 176 b 2.11 1.67986 0.9 0.1 2.062441

GJ 667C b 1.81 1.49063 0.9 0.1 1.775201
GJ 667C c 1.57 0.994 0.9 0.1 1.499919
GJ 667C d 1.75 0.71979 0.9 0.1 1.601234
GJ 667C e 1.39 0.78854 0.9 0.1 1.313396
GJ 667C f 1.39 0.898958 0.9 0.1 1.330722
GJ 3634 b 1.97 2.1125 0.9 0.1 2.097798

Kepler-186 f 1.05 0.7871 0.9 0.1 1.020179
Gl 15 A b 1.78 1.412153 0.9 0.1 1.739267

HD 40307 e 1.53 1.550694 0.9 0.1 1.548612
HD 40307 f 1.76 1.38125 0.9 0.1 1.717863
HD 40307 g 1.98 0 .939236 0.9 0.1 1.837706
HD 20794 c 1.34 1.89791667 0.9 0.1 1.832989

formly distributed between first 5 classes, known as balancing the data, so that bias in the training sample
is eliminated. Initially, each class holds one fifth of the training data and a new class, i.e. Class 6, defined
as Earth’s Class (or ”Earth-League”), has been derived by the proposed algorithm from first 5 classes where
it contains data based on the two conditions.

The two conditions that our algorithm uses to select exoplanets into Class 6 are defined as:

1. Thresholding: Exoplanets with their CDHS minus Earth’s CDHS being less than or equal to the
specified boundary value, called threshold. We have set a threshold in such a way that the exoplanets
with CDHS values within the threshold of 1 (closer to Earth) fall in Earth’s class. The threshold is
chosen to capture proximal planets as the CDHS of all exoplanets considered vary greatly
However, this proximity alone does not determine habitability.

2. Probabilistic Herding: if exoplanet is in the HZ of its star, it implies probability of membership to
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Table 6: Sample simulation output of CDHS with w′ = 0.99 and w′′ = 0.01 for CRS

Exoplanet CDHSi CDHSs CDHS
GJ 163 c 1.752914 1.877401 1.754159
GJ 176 b 1.819151 2.062441 1.821584

GJ 667C b 1.639149 1.775201 1.64051
GJ 667C c 1.482134 1.499919 1.482312
GJ 667C d 1.601711 1.601234 1.601706
GJ 667C e 1.352318 1.313396 1.351929
GJ 667C f 1.352318 1.330722 1.352102
GJ 3634 b 1.734199 2.097798 1.737835

Kepler-186 f 1.086963 1.020179 1.086295
GI 15 A b 1.62043 1.739267 1.621618

HD 40307 e 1.444661 1.548612 1.445701
HD 40307 f 1.611798 1.717863 1.612859
HD 40307 g 1.74282 1.837706 1.743769
HD 20794 c 1.307444 1.832989 1.312699

the Earth-League, Class 6, to be high; probability is low otherwise. Elements in each class in K-NN
get re-assigned during the run time. This automatic re-assignment of exoplanets to different classes is
based on a weighted likelihood concept applied on the members of the initial class assignment.

Consider K as the desired number of nearest neighbors and let S := p1, . . . , pn be the set of training sam-
ples in the form pi = (xi, ci), where xi is the d-dimensional feature vector of the point pi and ci is the
class that pi belongs to. In our case, dimension, d = 1. We fix S′ := p1′ , . . . , pm′ to be the set of testing
samples. For every sample, the difference in CDHS between Earth and the sample is computed by looping
through the entire dataset containing the 5 classes. Class 6 is the offspring of these 5 classes and is created
by the algorithmic logic to store the selected exoplanets which satisfy the conditions of the K-NN and the
two conditions – thresholding and probabilistic herding defined above. We train the system for 80% of

Figure 2: Plot of interior CDHSi (Left) and surface CDHSs (Right) for CRS
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the data-points based on the two constraints, prob(habitabilityi) = ‘high’ and CDHS(pi)−CDHS(Earth)≤
threshold. These attributes enhance the standard K-NN and help the re-organization of exoplaneti to Class 6.

If CDHS of exoplaneti falls with a certain range, K-NN classifies it accordingly into one of the remaining
5 classes. For each p′ = (x′, c′), we compute the distance d(x′, xi) between p′ and all pi for the dataset
of 664 exoplanets from the PHL-EC, S. Next, the algorithm selects the K nearest points to p′ from the
list computed above. The classification algorithm, K-NN, assigns a class c′ to p′ based on the condition
prob(habitabilityi) = ‘high’ plus the thresholding condition mentioned above. Otherwise, K-NN assigns p′
to the class according to the range set for each class. Once the ”Earth-League” class is created after the
algorithm has finished its run, the list is cross-validated with the habitable exoplanet catalog HEC. It must
be noted that Class 6 not only contains exoplanets that are similar to Earth, but also the ones which are
most likely to be habitable. The algorithmic representation of K-NN is presented in Appendix E.

4. Results and Discussion

The K-NN classification method has resulted in ”Earth-league”, Class 6, having 14 and 12 potentially
habitable exoplanets by DRS and CRS computations, respectively. The outcome of the classification algo-
rithm is shown in Tables 7 and 8.

Table 7: Potentially habitable exoplanets in
Earth’s class using DRS: Outcome of CDHS and
K-NN

Exoplanet CDH Score
GJ 667C e 1.307206
GJ 667C f 1.307373
GJ 832 c 1.539553

HD 40307 g 1.642265
Kapteyn’s b 1.498503
Kepler-61 b 1.908765
Kepler-62 e 1.475502
Kepler-62 f 1.316121

Kepler-174 d 1.933823
Kepler-186 f 1.07507
Kepler-283 c 1.63517
Kepler-296 f 1.619423
GJ 667C c 1.419643
GJ 163 c 1.651144

Table 8: Potentially habitable exoplanets in
Earth’s class using CRS: Outcome of CDHS and
K-NN

Exoplanet CDH Score
GJ 667C e 1.351929
GJ 667C f 1.352102
GJ 832 c 1.622592

HD 40307 g 1.743769
Kapteyn’s b 1.574564
Kepler-62 e 1.547538
Kepler-62 f 1.362128
Kepler-186 f 1.086295
Kepler-283 c 1.735285
Kepler-296 f 1.716655
GJ 667C c 1.482312
GJ 163 c 1.754159

There are 12 common exoplanets in Tables 7 and 8. We have cross-checked these planets with the
Habitable Exoplanets Catalog and found that they are indeed listed as potentially habitable planets. Class
6 includes all the exoplanets whose CDHS is proximal to Earth. As explained above, classes 1 to 6 are
generated by the machine learning technique and classification method. Class 5 includes the exoplanets
which are likely to be habitable, and planets in Classes 1, 2, 3 & 4 are less likely to be habitable, with
Class 1 being the least likely to be habitable. Accuracy achieved here is 92% for K = 1, implying 1-nearest
neighbor, and is 94% for K = 7, indicating 7 nearest neighbors.

In Figure 3 we show the plots of K-NN algorithm applied on the results in DRS (top plot) and CRS
(bottom plot) cases. The X-axis represents CDHS and Y -axis – the 6 different classes assigned to each
exoplanet. The figure is a schematic representation of the outcome of our algorithm. The color points,
shown in circles and boxes to indicate the membership in respective classes, are representative of membership
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only and do not indicate a quantitative equivalence. The numerical data on the number of the exoplanets
in each class is provided in Appendix F. A quantitative representation of the figures may be found at
https://habitabilitypes.wordpress.com/.

We also normalized CDHS of each exoplanet, dividing by the maximum score in each category, for both
CRS and DRS cases. This resulted in CDHS of all 664 exoplanets ranging from 0 to 1. Analogous to the
case of non-normalized CDHS, these exoplanets have been assigned equally to 5 classes. K-NN algorithm
was then applied to all the exoplanets’ CDHS for both CRS and DRS cases. Similar to the method followed
in non-normalized CDHS for CRS and DRS, K-NN has been applied to ”dump” exoplanets which satisfy
the criteria of being members of Class 6. Table 9 shows the potentially habitable exoplanets obtained from
classification on normalized data for both CRS and DRS. This result is illustrated in Figs. 3c and 3d. In
this figure, Class 6 contains 16 exoplanets generated by K-NN and which are considered to be potentially
habitable according to the PHL-EC. The description of the remaining classes is the same as in Figs. 3a and
3b.

Table 9: The outcome of K-NN on normalized dataset: potentially habitable exoplanets in Class 6 (Earth-
League).

Exoplanet DRSnormCDHS CRSnormCDHS
GJ 667C e 0.007833698 0.004294092
GJ 667C f 0.007834698 0.004294642
GJ 832 c 0.009226084 0.005153791

HD 40307 g 0.009841607 0.005538682
Kapteyn’s b 0.008980084 0.00500124
Kepler-22 b 0.01243731 0.007181929
Kepler-61 b 0.011438662 0.006546287
Kepler-62 e 0.008842245 0.004915399
Kepler-62 f 0.007887122 0.004326487

Kepler-174 d 0.011588827 0.006641471
Kepler-186 f 0.006442599 0.003450367
Kepler-283 c 0.009799112 0.005511735
Kepler-296 f 0.009704721 0.005452561
Kepler-298 d 0.013193284 0.007666263
GJ 667C c 0.007028218 0.00775173
GJ 163 c 0.022843579 0.005571684

As observed, the results of classification are almost similar for non-normalized (Figs. 3a & 3b) and nor-
malized (Figs. 3c & 3d) CDHS. Both methods have identified the exoplanets that were previously assumed as
potentially habitable (listed in the HEC database) with comparable accuracy. However, after normalization,
the accuracy increases from 94% for K = 1 to above 99% for K = 7. All our results for confirmed exoplanets
from PHL-EC, including DRS and CRS habitability CDHS scores and classes assignations, are presented in
the catalog at https://habitabilitypes.wordpress.com/. CRS gave better results compared to DRS case
in the non-normalized dataset, therefore, the final habitability score is considered to be the CDHS obtained
in the CRS phase.

Remark: Normalized and non-normalized CDHS are obtained by two different methods. After applying
the K-NN on the non-normalized CDHS, the method produced 12 and 14 habitable exoplanets in CRS and
DRS cases, respectively, from a list of 664 exoplanets. The ”Earth-League”, Class 6, is the class where the
algorithm ”dumps” those exoplanets which satisfy the conditions of K-NN and threshold and probabilistic
herding as explained in Sections 3.1, 3.2 and 3.3. We applied this algorithm again to the normalized CDHS
of 664 exoplanets under the same conditions. It is observed that the output was 16 exoplanets that satisfied
the conditions of being in Class 6, the ”Earth-league”, irrespective of CRS or DRS conditions. The reason
is that the normalized scores are tighter and much closer to each other compared to the non-normalized
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(a) for DRS on non-normalized data set

(b) for CRS on non-normalized data set

(c) for DRS on normalized data set

(d) for CRS on normalized data set

Figure 3: Results of attribute enhanced K-NN algorithm. The X-axis represents the Cobb-Douglas hab-
itability score and Y -axis – the 6 classes: schematic representation of the outcome of our algorithm. The
points in circles and boxes indicate membership in respective classes. These points are representative of
membership only and do not indicate a quantitative equivalence of the exact representation. Full catalog is
available at our website https://habitabilitypes.wordpress.com/
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CDHS, and that yielded a few more exoplanets in Class 6.
ESI is a number that tells us whether an exoplanet is similar to Earth. It is common

wisdom not to consider ESI as the only metric for habitability (Rita, please explain the physical
reasons behind). Another metric, PHI can’t be used as a single benchmark for habitability
and a lot of other physical conditions have to be checked before a conclusion may be drawn.
The proposed scoring method outperforms both ESI and PHI in terms of accurately classifying exoplanets as
habitable or not. The novel method of computing habitability by CD-HPF and CDHS, coupled with K-NN
with probabilistic herding makes it feasible to use a single metric that assigns majority of the habitable
exoplanets, in Earth’s league. The existing K-NN algorithm has been modified and attribute enhanced
voting scheme and probabilistic proximity have been utilized as a checkpoint for final class distributions –
we call it as the ”Earth-League”. For large enough data samples, there are theoretical guarantees that the
algorithm will converge to a finite number of discriminating classes. The members of ”Earth-League” are
cross-validated with the list of potentially habitable exoplanets in the HEC database. The results (Table 9)
render the proposed metric CDHS to behave with a reasonable degree of reliability.

5. Conclusion and Future Work

The two existing indices, ESI and PHI, are unreliable and sometimes controversial metrics as far as
habitability of a planet is concerned. As observed, these values are not benchmarks for determination
of habitability. At any rate, a benchmark of habitability may sound a bit ambitious given the perpetual
complexity of the problem. This is the reason that other physical parameters such as planets being terrestrial
or not, conditions to support existence of liquid water, have to be considered. This is where the CD-HPF
model triumphs. The model generates 12 potentially habitable exoplanets in Class 6, which is considered to
be a class where Earth-like planets reside. All these 12 exoplanets are identified as habitable by the PHL.
The score generated by our model is a single metric which could be used to classify habitability of exoplanets
as members of the ”Earth League”, unlike ESI and PHI. Attribute enhanced K-NN algorithm, implemented
in the paper, helps achieve this goal and membership of exoplanets to different classes of habitability may
change as the four input parameters of Cobb-Douglas model change values.

CD-HPF is a novel metric of defining habitability score for exoplanets. It needs to be noted that the
authors perceive habitability as a probabilistic measure, or a measure with varying degrees of certainty.
Therefore, the construction of different classes of habitability 1 to 6 is contemplated, corresponding to
measures as “most likely to be habitable” as Class 6, to “least likely to be habitable” as Class 1. As a
further illustration, classes 6 and 5 seem to represent the identical patterns in habitability, but they do
not! Class 6 – the ”Earth-League”, is different from Class 5 in the sense that it satisfies the additional
conditions of thresholding and probabilistic herding and, therefore, ranks higher on the habitability score.
This is in stark contrast to the binary definition of exoplanets being “habitable or non-habitable”, and a
deterministic perception of the problem itself. The approach therefore required classification methods that
are part of machine learning techniques and convex optimization — a sub-domain, strongly coupled with
machine learning. Cobb-Douglas function and CDHS are used to determine habitability and the maximum
habitability score of all exoplanets with confirmed surface temperatures in the PHL-EC. Global maxima
is calculated theoretically and algorithmically for each exoplanet, exploiting intrinsic concavity of CD-HPF
and ensuring ”no curvature violation”. Computed scores are fed to the attribute enhanced K-NN algorithm
— a novel classification method, used to classify the planets into different classes to determine how similar
an exoplanet is to Earth. The authors would like to emphasize that, by using classical K-NN algorithm
and not exploiting the probability of habitability criteria, the results obtained were pretty good, having 12
confirmed potentially habitable exoplanets in the ”Earth-League”. A catalog was created by the authors
which lists the confirmed exoplanets with the class assignments and computed habitability scores. This
catalog is built with the intention of further use in designing statistical experiments for the analysis of the
correlation between habitability and the abundance of elements (this work is briefly outlined in Safonova
et al., 2016). The full customized catalog of all confirmed exoplanets with class annotations is available at
https://habitabilitypes.wordpress.com/. It is a very important observation that our algorithm and
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methods give rise a score structure, CDHS, which is structurally similar to PHI as a corollary in the CRS
case (when the elasticities in CRS are assumed to be equal to each other). Both are geometric means of the
input parameters considered for the respective models.

CD-HPF uses four parameters (radius, density, escape velocity and surface temperature) to compute
habitability score, which alone are not sufficient to determine habitability of exoplanets. Other parameters,
such as e.g. orbital period, stellar flux, distance of the planet from host star, etc. may be equally important
to determine the habitability. Since our model is scalable, additional parameters can be added to achieve
better and granular habitability score. In addition, out of 1900 confirmed exoplanets in HEC, only 664
planets have their surface temperatures listed. For many expolanets, the surface temperature, which is an
important parameter in this problem, is not known or not defined. The unknown surface temperatures can be
estimated using various statistical models. Future work may include incorporating more input parameters,
such as orbital velocity, orbital eccentricity, etc. to the Cobb-Douglas function, coupled with tweaking the
attribute enhanced K-NN algorithm by checking an additional condition such as, e.g. distance to the host
star. Cobb-Douglas, as proved, is a scalable model and doesn’t violate curvature with additional predictor
variables. However, it is pertinent to check for the dominant parameters that contribute more towards the
habitability score. This can be accomplished by computing percentage contributions to the response variable
– the habitability score. We would like to conclude by stressing on the efficacy of the method of using a
few of the parameters rather than sweeping through a host of properties listed in the catalogs, effectively
reducing the dimensionality of the problem. To sum up, CD-HPF and CDHS turn out to be self-contained
metrics for habitability.

Note: All relevant data and results: sets, figures, animation video and a graphical abstract,
is available at our website, specially designed for this project, at https://habitabilitypes.wordpress.com/.
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Appendices

A. Special case: Heuristic for elasticity computation

Let us consider the CD-HPF for gaining more insight to computing the elasticity for maximization of
CDHS (Saha et al., 2016). The following heuristic produces easy and quick way to compute elasticity in
real time.

Y = AαBβ , (A.1)
where A and B are constants. Let [αmin, αmax] be the range of permissible values for α and, similarly,
[βmin, βmax] the range of permissible values for β, where αmin, αmax, βmin, βmax > 0. To maximize Y , if
A > 1 then α = αmax (α should be as large as possible and αmax is the largest permitted value). Similarly,
if A < 1, then α = αmin. Since the terms involving α are independent of those involving β, the same logic
can be applied independently to the term Bβ . An easy way to see the above is by taking log of both sides
of (A.1), we get

log Y = α logA+ β logB . (A.2)
To maximize log Y , if logA is negative, α needs to be as small as possible (since α > 0) else α must be as
large as possible. The same is applied to β.

Consider the case where we have a set of data points, i.e. instead of constants A and B, we have

yi = uαi v
β
i , (A.3)

where i=1 to N.
Suppose our criterion is to choose α and β so as to maximize Y =

∏N
i=1 yi, i.e. maximize

N∏
i=1

yi =
(

N∏
i=1

ui

)α( N∏
i=1

vi

)β
. (A.4)

The RHS is similar in form to the essential CD function and, hence, same rule can be applied i.e. If
∏N
i=1 ui <

1 then α = αmin else α = αmax. The term involving β can be minimized similarly and independently. The
only remaining step is to determine the permissible ranges. Let ε be the smallest value that α and β can
take. Suppose in the above example,

∏N
i=1 ui < 1 and

∏N
i=1 vi > 1. We know that α should be minimized

and β should be maximized. Since α + β < 1, let α + β = 1 − δ, where δ is a small non-negative number.
We then have αmin = ε and βmax = 1− δ − ε.

B. Proof of optimization using Lagrangian multiplier

The production maximization is done using Lagrangian multipliers. The Lagrangian function for the
optimization problem is

L = Y − λ(w1R+ w2D + w3Ts + w4Ve −m) ;
L = kRαDβT γs V

δ
e − λ(w1R+ w2D + w3Ts + w4Ve −m) .

The first order conditions are
∂L
∂R

= kαRα−1DβT γs V
δ
e − w1λ = 0 (B.1)

∂L
∂D

= kβRαDβ−1T γs V
δ
e − w2λ = 0 (B.2)

∂L
∂Ts

= kγRαDβT γ−1
s V δe − w3λ = 0 (B.3)

∂L
∂Ve

= kδRαDβT γs V
δ−1
e − w4λ = 0 (B.4)

∂L
∂λ

= −(w1R+ w2D + w3Ts + w4Ve −m) = 0 (B.5)
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Performing calculations the following values of R, D, Ts and Ve are obtained:

R =
(
pkα1−(β+γ+δ)ββγγδδwβ+γ+δ−1

1 w−β2 w−γ3 w−δ4

) 1
1−(α+β+γ+δ) (B.6)

D =
(
pkααβ1−(α+γ+δ)γγδδw−α1 wα+γ+δ−1

2 w−γ3 w−δ4

) 1
1−(α+β+γ+δ) (B.7)

Ts =
(
pkααββγ1−(α+β+δ)δδw−α1 w−β2 wα+β+δ−1

3 w−δ4

) 1
1−(α+β+γ+δ) (B.8)

Ve =
(
pkααββγγδ1−(α+β+γ)w−α1 w−β2 w−γ3 wα+β+γ−1

4

) 1
1−(α+β+γ+δ) (B.9)

Dividing (B.7), (B.8), (B.9) by (B.6), the following simplified expressions are obtained:

D = β

α

w1

w2
R

Ts = γ

α

w1

w3
R

Ve = δ

α

w1

w4
R

These expressions will be observed in the subsequent part of the proof again! The Lagrangian function for
the optimization problem is:

L = w1R+ w2D + w3Ts + w4Ve − λ(f(R,D, Ts, Ve)− ytar) . (B.10)

The first-order conditions are;

∂L
∂R

= w1 − λkαRα−1DβT γs V
δ
e = 0 (B.11)

∂L
∂D

= w2 − λkβRαDβ−1T γs V
δ
e = 0 (B.12)

∂L
∂Ts

= w3 − λkγRαDβT γ−1
s V δe = 0 (B.13)

∂L
∂Ve

= w4 − λkδRαDβT γs V
δ−1
e = 0 (B.14)

∂L
∂λ

= kRαDβT γs V
δ
e − ytar = 0 . (B.15)

Substituting the values of the above 4 parameters in equation (B.10), we get

⇒ ytar = kRα
(
β

α

w1

w2
R

)β (
γ

α

w1

w3
R

)γ (
δ

α

w1

w4
R

)δ
⇒ ytar = kRα+β+γ+δα−β−γ−δββγγδδwβ+γ+δ

1 w−β2 w−γ3 w−δ4

⇒Rα+β+γ+δ = k−1αβ+γ+δβ−βγ−γδ−δw−β−γ−δ1 wβ2w
γ
3w

δ
4ytar

⇒R =
(
k−1αβ+γ+δβ−βγ−γδ−δw−β−γ−δ1 wβ2w

γ
3w

δ
4ytar

) 1
α+β+γ+δ

⇒w1R =
(
k−1αβ+γ+δβ−βγ−γδ−δwα1w

β
2w

γ
3w

δ
4ytar

) 1
α+β+γ+δ

. (B.16)
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Similarly,

w2D =
(
k−1α−αββ+γ+δγ−γδ−δwα1w

β
2w

γ
3w

δ
4ytar

) 1
α+β+γ+δ (B.17)

w3Ts =
(
k−1α−αβ−βγβ+γ+δδ−δwα1w

β
2w

γ
3w

δ
4ytar

) 1
α+β+γ+δ (B.18)

w4Ve =
(
k−1α−αβ−βγ−γδβ+γ+δwα1w

β
2w

γ
3w

δ
4ytar

) 1
α+β+γ+δ (B.19)

The cost for producing ytar units in cheapest way is c, where

c = w1R+ w2D + w3Ts + w4Ve . (B.20)

Analytical representation of c can be rewritten from Eq. (B.20) as

c = Q
[
wα1w

β
2w

γ
3w

δ
4

] 1
α+β+γ+δ

y
1

α+β+γ+δ
tar , (B.21)

where

Q = k
−1

α+β+γ+δ

[
αβ+γ+δ

ββ + γγ + δδ
+ βα+γ+δ

αα + γγ + δδ
+ γα+β+δ

αα + ββ + δδ
+ δα+β+γ

αα + ββ + γγ

] 1
α+β+γ+δ

,

with
cavg = c

ytar
= Q

[
wα1w

β
2w

γ
3w

δ
4

] 1
α+β+γ+δ

y
1

α+β+γ+δ−1
tar .

Deriving the conditions for optimization:

pαkRα−1DβT γs V
δ
e = w1 (B.22)

pβkRαDβ−1T γs V
δ
e = w2 (B.23)

pγkRαDβT γ−1
s V δe = w3 (B.24)

pδkRαDβT γs V
δ−1
e = w4 (B.25)

Multiplying these equations with R, D,Ts and Ve, respectively,

pαkRαDβT γs V
δ
e = w1R⇒ pαY = w1R (B.26)

pβkRαDβT γs V
δ
e = w2D ⇒ pβY = w2D (B.27)

pγkRαDβT γs V
δ
e = w3Ts ⇒ pγY = w3Ts (B.28)

pδkRαDβT γs V
δ
e = w4Ve ⇒ pδY = w4Ve (B.29)

Dividing equations (B.27), (B.28) and (B.29) by (B.26) following equations are obtained:

D = β

α

w1

w2
R (B.30)

Ts = γ

α

w1

w3
R (B.31)

Ve = δ

α

w1

w4
R (B.32)
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Substituting these values of D, Ts and Ve into Eq. (B.26) and performing some simple algebraic calculations,
we obtain

pαkRα−1DβT γs V
δ
e = w1

⇒ pαkRα−1
(
β

α

w1

w2
R

)β (
γ

α

w1

w3
R

)γ (
δ

α

w1

w4
R

)δ
= w1

⇒ pkRα+β+γ+δ−1ββγγδδwβ+γ+δ−1
1 w−β2 w−γ3 w−δ4 = 1

⇒R =
(
pkα1−(β+γ+δ)ββγγδδwβ+γ+δ−1

1 w−β2 w−γ3 w−δ4

) 1
1−(α+β+γ+δ)

. (B.33)

After performing similar calculations, the following expressions of D, Ts and Ve are obtained:

D =
(
pkααβ1−(α+γ+δ)γγδδw−α1 wα+γ+δ−1

2 w−γ3 w−δ4

) 1
1−(α+β+γ+δ) (B.34)

Ts =
(
pkααββγ1−(α+β+δ)δδw−α1 w−β2 wα+β+δ−1

3 w−δ4

) 1
1−(α+β+γ+δ) (B.35)

Ve =
(
pkααββγγδ1−(α+β+γ)w−α1 w−β2 w−γ3 wα+β+γ−1

4

) 1
1−(α+β+γ+δ) (B.36)

These values of R, D, Ts and Ve are the expressions to be maximized. Substituting values of R, D, Ts and
Ve into CD-HPF,

Y = f (R,D, Ts, Ve) = (R)α · (D)β · (Ts)γ · (Ve)δ , (B.37)

we obtain

Y =
(
kpα+β+γ+δααββγγδδw−α1 w−β2 w−γ3 w−δ4

) 1
1−(α+β+γ+δ)

. (B.38)

If α + β + γ + δ < 1, the exponent on the right hand side of the above equation remains strictly positive
and Y , the habitability score, increases in a bounded fashion. This is a natural extension to the sample 3D
CD-HPF model for DRS, where the constraint in two input parameters is α+ β < 1 (please refer to Matlab
codes in Appendix D).

C. Hessian Matrix: Conditions for concavity for CRS and DRS

A c2 function f : U ⊂ Rn → R defined on a convex open set U is concave if and only if the Hessian
matrix D2f(x) is negative semi-definite for all x ∈ U . A matrix H is negative semi-definite if and only if its
2n − 1 principal minors alternate in sign, so that odd order minors are less than equal to 0, and even order
minors are greater than equal to 0. The Cobb-Douglas function for two inputs is:

Y == f(x, y) = kxα1x
β
2 .

Its Hessian is [
α(α− 1)kxα−2

1 xβ2 αβkxα−1
1 xβ−1

2
αβkxα−1

1 xβ−1
2 β(β − 1)kxα1x

β−2
2

]
,

where

∆1 = α(α− 1)kxα−2
1 xβ2

∆1 = β(β − 1)kxα1x
β−2
2

∆2 = αβk2x2α−2
1 x2β−2

2 (1− (α+ β)) .
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For DRS and CRS, α+ β ≤ 1 and α ≥ 0, β ≥ 0. Since all other terms in ∆2 are greater than 0, and

(1− (α+ β)) ≥ 0
⇒∆2 ≥ 0 .

By inspection, α(α − 1) and β(β − 1) are less than or equal to 0. Other terms in ∆1 are non-negative and
hence the product,

∆1 ≤ 0 .

Thus, conditions for CD-HPF to be concave, i.e.

∆1 ≤ 0
∆2 ≥ 0 .

are satisfied by DRS and CRS. This is in agreement with the graphs obtained for DRS and CRS; while
for IRS the graph is neither concave nor convex. Therefore, no formulation of CD-HPF and subsequent
computation for CDHS involves the IRS phase.

D. MATLAB Codes

Function fmincon

The function fmincon finds a constrained minimum of a scalar function of multivariable starting at an initial
point. This is generally known as constrained nonlinear optimization. Function fmincon solves problems of
the form:
min f(x) subject to x, {

A ∗ x ≤ b
Aeq ∗ x = beq

are the linear constraints, and the following equations are the non-linear constraints:{
C ∗ x ≤ 0
Ceq ∗ x = 0

and bounding of variables {
lb ≤ x
x ≤ ub

This has been applied to the cases, CRS and DRS for the CD-HPF and CDHS computation. The trick
to using fmincon lies in computing the elasticities α and β of CRS and DRS in the context of a sample 3D
CD-HPF. The values of elasticities, thus obtained, help optimize CDHS for each exoplanet.

Constant Returns to Scale
Applying the constraints: {

α+ β = 1
α > 0, β > 0

to the function: Y = kxα1x
β
2 ; use fmincon to compute α and β for optimum Y .
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Decreasing Returns to Scale
Applying the constraints: {

α+ β < 1
α > 0, β > 0

to the function: Y = kxα1x
β
2 ; use fmincon to compute α and β for optimum Y .

NOTE: Identical technique is employed to compute elasticity values, δ and γ for the scaled up model,

Y = kxα1x
β
2x

δ
3x
γ
4 .

Syntax of fmincon

[x,fval] = fmincon(fun,x0, A, b) starts at point x0 and finds a minimum x to the function described in fun
subject to the linear inequalities, A ∗ x ≤ b, where A is a matrix, x and b are vectors and x0 can be a scalar,
a vector or a matrix. It also returns the value of the objective function fun at the solution x.

[x,fval] = fmincon(fun,x0, A, b, Aeq, beq) starts at x0 and minimizes fun subject to the linear inequalities
Aeq ∗ x = beq and A ∗ x ≤ b, where Aeq is a matrix and beq is a vector. It also returns the value of the
objective function fun at the solution x.

Function fmincon() has four algorithm options:

• interior-point

• sqp

• active-set

• trust-region-reflective

Trust-region-reflective is the default algorithm uses by fmincon. In our case, we have also used the default
one.

Matlab code for Decreasing Returns to Scale:

x0 = [0.2,0.2];
A = [1 1;-1 0;0 -1];
b = [0.9;-0.1;-0.1];
[x,fval] = fmincon(@cobb,x0, A, b);
function f = cobb(x);
/*where f is the outcome of Cobb-Douglas function and x(1) and x(2) are the elasticities*/

f = −1.99x(1). ∗ 1.06x(2);

end
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3D plot code for DRS

syms xm ym;
N = 663;
dy = 0.001;
dx = 0.001;
[xm,ym] = meshgrid(0.1 : dx : 0.9, 0.1 : dy : 0.9);

f = −1.57xm. ∗ 573.18ym;

f(xm+ ym > 0.9) = NaN;
surf(xm,ym,f,’EdgeColor’,’none’);

Matlab code for Constant Returns to Scale:

x0 = [0.4, 0.2];
A = [−10; 0− 1];
b = [−0.1;−0.1];
Aeq = [11];
beq = [1];
[x, fval] = fmincon(@cobb,x0, A, b, Aeq, beq);

function f = cobb(x);
/*where f is the outcome of Cobb-Douglas function and x(1) and x(2) are the elasticities*/

f = −1.99x(1). ∗ 1.06x(2);

end

3D plot code for CRS

syms xm ym;
N = 663;
dy = 0.001;
dx = 0.001;
[xm,ym] = meshgrid(0.1 : dx : 0.9, 0.1 : dy : 0.9);

f = −1.57xm. ∗ 573.18ym;

f(xm+ ym > 1) =NaN;
surf(xm,ym,f,’EdgeColor’,’none’);

E. Attribute-Enhanced K-NN Algorithm: pseudo code

Consider K as the desired number of nearest neighbors and S := p1, . . . , pn be the set of training samples
in the form pi = (xi, ci), where xi is the d-dimensional feature vector of the point pi and ci is the class that
pi belongs to. In our case, the dimension d = 1. Similarly, set S′ := p1′ , . . . , pm′ to be the set of testing
samples.

N ← 664
M ← 530
n← 134
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boundary ← 1
threshold← 1

for i = 1 to N do
if habitabilityi = 1
prob(habitabilityi) = ‘high’
else
prob(habitabilityi) = ‘low’
for i = 1 to M do,
if (prob(habitabilityi) = ‘high’ and
CDHS(pi)-CDHS(earth)<= boundary)
exoplaneti belongs to Class 6
else
if CDHS of exoplaneti falls in certain range
classify it accordingly in one of the remaining 5 classes
for each p′ = (x′, c′)
Compute the distance d(x′, xi) between p′ and all pi belonging to S
Select the k nearest points to p′ from the list computed above
Apply Probabilistic Herding: Assign a class to p′ based on the conditions

• if prob(habitabilityi) = ‘high’ and satisfies the boundary condition mentioned above assign
class c′ to p′

• else assign p′ the class according to the range set for each class.
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F. Number of exoplanets in each class

This section gives the statistics of the number of exoplanets in six classes for all the four cases. The
tables below show the details of the class number with the number of exoplanets belong to each class.

Table F.10: Number of exoplanets in each class
on DRS

Class Number Number of exoplanets
6 14
5 131
4 129
3 123
2 133
1 133

Table F.11: Number of exoplanets in each class
on CRS

Class Number Number of exoplanet
6 12
5 138
4 129
3 126
2 129
1 128

Table F.12: Number of exoplanets in each class
on DRS with normalized data

Class Number Number of exoplanets
6 16
5 130
4 129
3 125
2 129
1 134

Table F.13: Number of exoplanets in each class
on CRS with normalized data

Class Number Number of exoplanets
6 16
5 129
4 129
3 126
2 131
1 132
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