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Abstract. Scientometrics deals with analyzing and quantifying works in science, technology, and innova-
tion. It is a study that focuses on quality rather than quantity. The journals are evaluated against several
different metrics such as the impact of the journals, scientific citation, SJR, SNIP indicators as well as the
indicators used in policy and management context. The practice of using journal metrics for evaluation
involves handling a large volume of data to derive useful patterns and conclusions. These metrics play an
important role in the measurement and evaluation of research performance. Due to the fact that most
metrics are being manipulated and abused, it becomes essential to judge and evaluate a journal by using a
single metric or a reduced set of significant metrics. We propose l1-norm Singular Value Decomposition(l1-
SVD) to efficiently solve this problem. We evaluate our method to study the emergence of a new journal,
Astronomy and Computing, by comparing it with 46000 journals chosen from the fields of Computing,
Informatics, Astronomy and Astrophysics.
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1 INTRODUCTION

Scientometrics evaluates the impact of the results of scientific research by placing focus on the work’s quantitative
and measurable aspects. Statistical mathematical models are employed in this study and evaluation of journals
and conference proceedings to asses their quality. The implosion of journals and conference proceedings in the
science and technology domain coupled with the insistence of different rating agencies and academic institutions
to use journal metrics for evaluation of scholarly contribution present a big data accumulation and analysis
problem. This high volume of data requires an efficient metric system for fair rating of the journals. However,
certain highly known and widely used metrics such as the Impact Factor and the H factor have been misused
lately through practices like non-contextual self-citation, forced citation, copious-citation etc. [7] Thus, the way
this volume of data is modeled needs improvement because it influences the evaluation and processing of this
data to draw useful conclusions. One effective way to deal with this problem is to characterize a journal by a
single metric or a reduced set of metrics that hold more significance. The volumes of data scraped from various
sources are organized as a rectangular mxn matrix where m is the rows representing the number of articles in
a journal and n columns of various Scientometric parameters. An effective dimensionality and rank reduction
technique such as the Singular Value Decomposition (SVD) applied on the original data matrix not only helps
to obtain a single ranking metric(based on the different evaluation parameters enlisted as various columns) but
also identifies pattern used for efficient analysis of the big data. Apache Mahout, Hadoop, Spark, R, Python,
Ruby are some tools that can be used to implement SVD and other similar dimensionality reduction techniques.
[5]

One notable characteristic of the Scientometric data matrix is its sparsity. The matrix is almost always
rectangular and most metric fields (columns) do not apply to many of the articles(rows). For instance, a lot of
journals may not have patent citations. Similarly, a number of other parameters might not apply to a journal as
a whole. Usually, n and m differ from each other by a good integer difference. Thus, by virtue of this sparsity,
the efficiency of the SVD algorithms can be enhanced when coupled with norms like l1-norm, l2-norm or the
group norms. In general, both sparsity and structural sparsity regularization methods utilize the assumption
that the output Y can be described by a reduced number of input variables in the input space X that best
describe the output. In addition to this, structured sparsity regularization methods can be extended to allow
optimal selection over groups of input variables in X .
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2 The depths of Dimensionality Reduction

Dimensionality reduction has played a significant role in helping us ascertain results of the analysis for vo-
luminous data set [2]. The propensity to employ such methods comes from the phenomenal growth of data
and the velocity at which it is generated. Dimensional reduction such as Singular Value Decomposition and
Principle component Analysis solves such big data problems by means of extracting more prominent features
and obtaining a better representation of the data. This data tends to be much smaller to store and much easier
to handle to perform further analysis. These dimensionality reduction methods are very often found in most of
the tools which handle large data sets and perform rigorous data analysis. Such tools include Apache Mahout,
Hadoop, Spark, R, Python etc. The ease of employing such methods is directly dependent on the performance
of such tools to be able to compute and assess the results quickly and store it efficiently, all this while managing
resources available at an optimal rate. The divergence in the methods used in these tools to compute such
algorithms gives us scope to study and evaluate such case scenarios and help us choose the right kind of tools
to perform these tasks.

2.1 PCA

Principal Component Analysis, a technique mostly used in statistics to transform a set of observations of
possibly correlated variables into a set of linearly uncorrelated variables called as Principal Components. These
Principal Components are the representation of the underlying structure in the data or the directions in which
the variance is more and where the data is more concentrated.

The procedure lays emphasis on variation and identification of strong patterns in the dataset. PCA extracts
a low dimensional set of features from a higher dimension dataset, simultaneously serving the objective of
capturing as much useful information as possible. PCA is most commonly implemented in two ways:-

– Eigenvalue Decomposition of a data covariance(or correlation) matrix into canonical form of eigenvalues
and eigenvectors. However, only square/diagonalizable matrices can be factorized this way and hence it also
takes the name Matrix Diagonalization.

– Singular Value Decomposition of the initial higher dimension matrix. This approach is relatively more
suitable for the problem being discussed since it exists for all matrices: singular, non-singular, dense, sparse,
square or rectangular.

2.2 Singular Value Decomposition

Singular Value Decomposition is the factorization of a real or complex matrix. Large scale of Scientometric data
is mined using suitable web scraping techniques and is modeled as a matrix in which the rows represent the
articles in a journal published over the years, and the columns represent various Scientometrics or indicators
proposed by experts of evaluation agencies [3]. The original data matrix, say A of dimension mxn and rank k
is factorized into three unique matrices U, V and WH.

– U - Matrix of Left Singular Vectors of dimension mxr

– V - Diagonal matrix of dimension rxr containing singular values in decreasing order along the diagonal

– WH - Matrix of Right Singular Vectors of dimension nxr. The Hermitian, or the conjugate transpose of
W is taken, changing its dimension to rxn and hence the original dimension of the matrix is maintained
after the matrix multiplication. In this case of Scientometrics, since the data is represented as a real matrix,
Hermitian transpose is simply the transpose of W.

r is a very small number numerically representing the approximate rank of the matrix or the number of
”concepts” in the data matrix A. Concepts refer to latent dimensions or latent factors showing the association
between the singular values and individual components [3]. The choice of r plays a vital role in deciding the
accuracy and computation time of the decomposition. If r is equal to k, then the SVD is said to be a Full Rank
Decomposition of A. Truncated SVD or Reduced Rank Approximation of A is obtained by setting all but the
first r largest singular values equal to zero and using the first r columns of U and W [4].

Therefore, choosing a higher value of r closer to k would give a more accurate approximation whereas a
lower value would save a lot of computation time and increase efficiency.
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2.3 Regularization Norms

In the case of Big Data, parsimony is central to variable and feature selection, which makes the data model
more intelligible and less expensive in terms of processing.

lp-norm of a matrix or vector x, represented as ||xp|| is defined as, ||xp|| = p
√
Σi|x|ip i.e the pth root of

summation of all the elements raised to the power p. Hence, by definition, l1 norm = ||x||1 = Σi|x|i
Sparse approximation, inducing structural sparsity as well as regularization is achieved by a number of norms,

the most common ones being l1 norm and the mixed group l1-lq norm. The relative structure and position of
the variable in the input vector, and hence the inter-relationship between the variables is inconsequential as a
variable is chosen individually in l1 regularization. Prior knowledge aids in improving the efficacy of estimation
through these techniques.

The l1 norm concurs to only the cardinality constraint and is unaware to any other information available
about the patterns of non-zero coefficients.[1]

2.4 Sparsity via the l1 norm

Most variable or feature selection problems are presented as combinatorial optimization problems. Such prob-
lems focus on selecting the optimal solution through a discrete, finite set of feasible solutions. Additionally, l1
norm turns these problems to convex problems after dropping certain constraints from the overall optimization
problem. This is known as convex relaxation. Convex problems classify as the class of problems in which the
constraints are convex functions and the objective function is convex if minimizing, or concave if maximizing.

l1 regularization for sparsity through supervised learning involves predicting a vector y from a set of usually
reduced values/observations consisting a vector in the original data matrix x. This mapping function is often
known as the hypothesis h : x→y. To achieve this, we assume there exists a joint probability distribution P(x,y)
over x and y which helps us model anomalies like noise in the predictions.

In addition to this, another function known as a loss function L(y’,y) is required to measure the difference
in the prediction y’=h(x) from the true result y. Consider the resulting vectors consisting of the predicted value
and the true value to be y’ and y respectively. A characteristic called Risk, R(h) associated with loss function,
and hence in turn with the hypothesis-h(x) is defined as the expectation of the loss function.

R(h) = E[L(y′, y)] =

∫
L(y′, y) dP (x, y)

Thus, the hypothesis chosen for mapping should be such that the risk, R(h) is minimum. This refers to as
risk minimization. However, in usual cases, the joint probability distribution of the problem in hand, P(x,y) is
not known. So, an approximation called empirical risk is computed by taking the average of the loss function
of all the observations. Empirical Risk is given by :

Remp(h) =
1

n

n∑
i=1

L(y’i,yi)

The empirical risk minimization principle states that the hypothesis(h’) selected must be such it that reduces
the empirical risk Remp(h):

h′ = min
h
Remp(h)

While mapping observations x in n dimensional vector x to outputs y in vector y, we consider p pairs of
data points - (xi,yi) ∈ Rn× y where i = 1,2...p.

Thus the optimization problem for the data matrix in Scientometrics takes the form:

min
w∈ Rn

1

p

p∑
i=1

L(y’i,w
Txi) + λΩ(w)

L is a loss function which can either be square loss for least squares regression, L(y′, y) = 1
2 (y′ − y)2, or a

logistic loss function. Now, the problem thus takes the form:

min
w∈Rn

||y’−Aw||2

Since the variables in the vector space/groups can overlap, it is ideal to choose Ω(w) to be a group norm for
better predictive performance and structure. The m rows of data matrix A are treated as vectors or groups(g)
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of these variables, forming a partition equal to the vector dimension, [1:n]. If G is the set of all these groups
and dg is a scalar weight indexed by each group g, the norm is said be a l1-l−q norm where q ∈ [2,∞). [1]

Ω(w) =
∑
g∈G

dg||wg||q

The choice of the indexed weight dg is critical because it is responsible for the discrepancies of sizes between
the groups. It must also compensate for the possible penalization of parameters which can increase due to
high-dimensional scaling. The factors that affect the selection are the choice of q in the group norm and the
consistency that is expected of the result. In addition to this, accuracy and efficiency can be enhanced by
weighing each coefficient in a group rather than weighing the entire group as a whole. The initial sparse data
matrix is first manipulated using the l1-norm. [1]

3 Methodology

An estimate of a journal’s scholastic indices is necessary to judge its effective impact. The nuances of sciento-
metric factors such as Total Citation Count and Self-citation Count come into play when deciding the impact of
a journal. However, these factors unless considered in ideal circumstances don’t by themselves become a good
indicator to represent the importance of a journal. Many anomalies arise when considering these indices directly
which may misrepresent or falsify a journal’s true influence. The necessity to use these indices in context with
a ranking algorithm is imperative to better utilize these indices. The resulting transformation of l1-norms gives
rise to a row matrix which is of the length equal to the number of features of the pristine Scientometric data.
This row matrix effectively represents the entire dataset at any given iteration. The application of the Singular
Value Decomposition operation on this row matrix is key in determining the necessary norm values to remove
through a recursive approach.

The singval array contains the Normalized Singular Values of all the individual l1-norm transformed
columns. These values act as scores while addressing the impact of any given journal. In the context of Singular
Values the one with the lowest singval score is the most influential journal. Utilizing these scores we can for-

Algorithm 1 Recursive l1-norm SVD

1: A← Input Transposed Feature Matrix A
2: procedure Lasso
3: row matrix← Coefficents of Lasso Regression
4: return row matrix
5: procedure SVD
6: U,Σ,V← Matrices of SVD
7: return Σ
8: procedure Normalize
9: Norm Data← Normalized using l1-norms

10: return Norm Data
11: procedure Recursive
12: L1 row← LASSO(A)
13: singval []← SV D(L1 row)
14: Row Norm← Normalize(L1 row)
15: Col Norm← Normalize(All columns of A)
16: Col i← Closest Col Norm Value to Row Norm
17: Delete Col i from A
18: goto RECURSIVE

mulate a list of Journals which give preference to subtle factors such as high or low Citation Counts and give
an appropriate ranking. Identifying the influential journals from a column norm and contrasting it with the
Singular values is the equivalent of recursively eliminating the a low impact journal by comparing it’s Singular
Value to its Frobenius norm. This allows the algorithm to repeatedly eliminate the journals and find the score
simultaneously to give a more judicious ranking system. Our method is different from the SCOPUS journal rank
(SJR) algorithm. The SJR indicator computation uses an iterative algorithm that distributes prestige values
among the journals until a steady-state solution is reached. The method is similar to eigen factor score [9] where
the score is influenced by the size of the journal so that the score doubles when the journal doubles in size. Our
method, on the contrary, adopts a recursive approach and doesn’t assume initial prestige values. Therefore, the
eigen factor approach may not be suitable for evaluating the short-term influence of peer-reviewed journals. In
contrast, our method works well under such restrictions.
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4 The Big Data Landscape

The appeal of modern-day computing is its flexibility to handle volumes of data through an aspect of coordination
and integration. Advancements in Big Data frameworks and technologies has allowed us to break the barriers of
memory constraints for computing and implement a more scalable approach to employ methods and algorithms.
[5] The aforementioned journal ranking scheme is one such algorithm which thrives under the improvements
made to scalability in Big Data. With optimized additions such as Apache Spark to the distributed computing
family, the enactment of l1 Regularization and Singular Value Decomposition has reached an all new height.
Implementing the SVD algorithm with the help of Spark can not only improve spatial efficiency but temporal as
well. The l1-norm SVD scheme utilizes the SVD and regularization implementation of ARPACK and LAPACK
libraries along with a cluster setup to enhance the speed of execution by a magnitude of at least three times
depending on the configuration. Collecting data is also a very important aspect of Big Data topography. The
necessity of a cluster based system is rendered useless without the requisite data to substantiate it. Scientometric
data usually deals with properties of the journals such as Total Citation, Self-Citation etc. This data could be
collected using Web Scraping methodologies but also can be found by most journal ranking organizations,
available for open source use; SCOPUS and SCIMAGO. For the l1-norm SVD scheme, we used SCOPUS as it
had an eclectic set of features which were deemed appropriate to showcase the effectiveness of the algorithm.
The inclusion of the two important factors such as CiteScore and SJR indicators gave a better enhancement
over just considering one over the other. For more information about the data and code used to develop this
algorithm (please refer to [8], Github repository of the project).

4.1 Case Study : Astronomy and Computing

SCOPUS and SCIMAGO hold some of the best journal ranking systems to this day, using their CiteScore and
SJR indicators respectively to rank journals. However, due to the manner in which both these indicators are
considered, it is often the case that the ranking might not display the true potential of a specified scientific
journal. To demonstrate this we considered the case of the Journal Astronomy and Computing within the context
of SCOPUS Journals in the relevant domain of Astronomy and Astrophysics.

The primary focus of this case study is to determine where the Journal Astronomy and Computing stand
with respect other journals which were established prior to it. The algorithm also tests the validity of the ranking
and suggests an alternative rank which used a more holistic approach towards the features.

Journal Name L1 Scheme Rank SJR based Rank Year

Astronomy and Computing 39 31 2013

Astronomy and Astrophysics Review 40 5 1999

Radiophysics and Quantum Electronics 41 51 1969

Solar System Research 42 48 1999

Living Reviews in Solar Physics 43 3 2005

Astrophysical Bulletin 44 45 2010

Journal of Astrophysics and Astronomy 45 55 1999

Revista Mexicana de Astronomia y Astrofisica 46 23 1999

Acta Astronomica 47 20 1999

Journal of the Korean Astronomical Society 48 32 2009

Cosmic Research 49 58 1968

Geophysical and Astrophysical Fluid Dynamics 50 46 1999

New Astronomy Reviews 51 12 1999

Kinematics and Physics of Celestial Bodies 52 65 2009

Astronomy and Geophysics 53 67 1996

Chinese Astronomy and Astrophysics 54 72 1981
Table 1. Case Study: Astronomy and Computing, SJR and L1-SVD ranks

Using the publicly available SCOPUS dataset we implemented the aforementioned l1-norm SVD scheme
to rank all its corresponding journals and simultaneously determine the potency of the algorithm. SCOPUS
contains approximately around 46k Journals listed in different domains. Discarding few redundancies, SCOPUS
effectively covers a large range of metrics and provides adequate resources for verification. For this demonstration,
we have considered SCOPUS’s 7 different metrics to be used as features in our algorithm. These features include
Citation Count, Scholarly Output, SNIP, SJR, CiteScore, Percentile and Percent Cited.

To cross verify the results of the algorithm they were compared to SJR based ranking of SCIMAGO to
articulate the discrepancies. The l1-norm SVD scheme worked brilliantly in rating the journals and approached

https://github.com/rahul-aedula95/L1_Norm
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the data in a more wholesome sense. The result was a ranking system which ranked Astronomy and Computing
much higher than most older journals and also at the same time highlighting the niche prominence of the
particular journal. Similarly, this method also highlighted the rise of other journals which were underrepresented
due to the usage of the aforementioned SCOPUS and SCIMAGO indicators. This was method was largely
successful in rectifying the rank of such journals. This l1-norm SVD scheme can be extrapolated to other data
entries as well. It can also be used to study the impact of individual articles. Utilizing similar features such as
Total Citation, Self Citation, and NLIQ. The algorithm can be used to rank articles within a journal with great
accuracy along with a holistic consideration.

4.2 Contrasting Performances of l1 and l2 Norms

Being recursive in nature the Norm-based algorithms are subjected to some lapse while parallelizing its execution.
However, they can be improved by using the right kind of suitable norm to enhance its running time. The decision
of using l1-norm over the l2-norm was made because of a pragmatic choice for the following recursive scheme.
The facet of the l1-norm to use a loss function over the l2-norm’s squared data approach proves to be significantly
better in structuring the data for a high-density computation. This type of method allows the overall dataset
to reduce to a row matrix the size of the smallest dimension of the original data. This gives the added benefit
of having a very consistent execution time and scale accordingly with the increase in data size.

Norm Time per row

l1 Norm 0.172s

l2 Norm 0.188s
Table 2. Performance time for a row matrix of size 46k.

The execution time mentioned in Table 2 of this article gives the time-based performance of the different
norms. This will only get significant with the increase in the size of the rows. This dereliction in parallelization
can be compensated by the expected speed increase in the execution of the l1-norm and SVD routines in a
cluster setup. Optimized settings like Apache Spark which uses the aforementioned LAPACK and ARPACK
libraries are able to boost the speed even further. The biggest benefit of opting such Big Data settings is that
by increasing the size of the cluster the overall speed of the algorithm also scales appropriately.

Data Framework Overall Time

Python 2hrs +

R 58 mins

L1 SVD 15 mins
Table 3. Performance time for SVD of size 100k X 100k.

Table 3 indicates the performance time for the SVD algorithms in different ecosystems. The usage of SVD
function in the algorithm to determine the individual singular values of the reduced row matrices of the columns
can also be enhanced by using the corresponding Eigen Value optimization which are usually provided within the
Big Data environment. Algorithms such as Lanczo’s algorithm can not only enhance the speed of the operation
but also can be very easily parallelized.

Hence, this combination of l1-norm and SVD can effectively make the best version of algorithm; being fast
in execution at the same time delivering a holistic approach.

5 Knowledge Discovery from Big Data Computing: The Evolution of ASCOM

Even though Astronomy and Computing (ASCOM) has been in publication for five years only, its reputation
has grown quickly as seen from the ranking system proposed here. This is despite the fact that ASCOM is
severely handicapped in size. ASCOM is ranked 39 according to our method, slightly lower than its 31 rank in
SCOPUS. This is due to the fact that we haven’t used ” citations from more prestigious journals” as a feature.
Nonetheless, it is ranked higher than many of its peers which have been in publication over 20 years. This is
also due to the fact that ASCOM is ”one of its kind” and uniquely positioned in the scientific space shepherded
by top notch editors. Such qualitative feature, regrettably is not visible from the big data landscape.

There is another interesting observation to take note of. By ignoring the ”size does matter” paradigm,
the ranks of some journals (many years in publication with proportionate volumes and issues) suffered. A few



L1 Norm SVD based Ranking Scheme 7

Fig. 1. l1 Rank Progression of ASCOM based on SCOPUS data computed by the proposed method. The steady ascen-
dancy in the journal’s rank is unmistakable. it will be interesting to investigate the behavior of the journal rank in the
long run once enough data is gathered.

examples include Living Reviews in Solar Physics, ranked 43 according to our scheme while it is ranked 3 in
SCOPUS and Astronomy and Astrophysics Review, ranked 40 in our scheme while it is ranked 5 according to
SCOPUS. This is important as our goal was to investigate the standing of a journal relatively new and in a
niche area. This indicates that years in publication may sometimes dominate over other quality indicators and
may not capture the growth of journals in ”short time windows”. Our study also reveals that ASCOM is indeed
a quality journal as far as early promise is concerned.

6 Conclusion

The Big Data abode adds a new dimension to the already existing domain of Machine Learning; where the
computation aspect is as important as the algorithmic and operational facet. The l1-norm SVD scheme does
just that, it introduces a brand new way of ranking data by considering all the features to its entirety. The
added benefit of optimizing the required norms and methodologies in terms of a Big Data domain suggests
its vast flexibility in the area of Big Data Mining. This article covered its application in the Scientometric
Domain. However it can be extended to any type of data, provided that the nuances are well understood. The
aforementioned recursive methodology of the scheme allows us to carefully consider the important feature of
the dataset and make prudent decisions based on the outcome of an iteration. This allows us to take a more
wholesome approach which is very similar to the page rank algorithm which gives a specific importance to each
one of the features under computation.

In the context of Scientometrics, this scheme is also applicable as a way to rank specific articles in a
given journal with the result that their respective scholastic indices are available. We can conduct similar data
experiments using indicators like Total Citations, Self Citations etc to categorize them of their various other
features available for articles. We have also done some extensive studies based on the scholastic indices of
the ACM journal whose case study lies outside the scope of this article and were able to successfully rank
the corresponding journals and article. The scheme proved to be successful in evaluating the parameters with
their nuances intact. More often than not, most Scientometric indicators do not apply to the journal being
evaluated. As a consequence of this, the data matrix in which the rows represent the articles in the journal and
the columns represent the different evaluation metrics is clearly sparse. Exploiting this sparsity, using certain
structural sparsity inducing norms and applying recursive Singular Value Decomposition to eliminate metrics
can make the process more efficient. Sparse approximation is ideal in such cases because although the data
is represented as a matrix in a high-dimensional space, it can actually be obtained in some lower-dimensional
subspace due to it being sparse.

With the ever-expanding necessity to process voluminous amounts of data, there needs to be a need to
provide solutions which can adapt to the fluctuating technological climate. The l1-norm SVD scheme tries to
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achieve similar potency, the usage of norm-based dimensionality reduction enhances the over-all efficiency on
how we interpret data. The usage of techniques like sparsity norms suppresses outliers and only highlights the
most meaningful data in store. The evolution of such methods will prove to be an absolute prerequisite in the
future to compute copious amounts of data. Moving forward Dimensionality Reduction based techniques will
become the foundation of salient data identification and the l1-norm SVD scheme is such a step along that
direction.
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